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Application of the Frenkel-Kontorova model to surface 
reconstructions 
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Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 

Received 7 August 1989 

Abstract. We apply the Frenkel-Kontorova model to the case of surfaces where the natural 
bond-length within the surface layer is different from the substrate bond-length. A recon- 
struction may occur in which the surface density of atoms is either less than or greater than 
the bulk density. The stability of the unreconstructed surface is controlled by the ratio of two 
parameters which have simple physical interpretations. We discuss the stability of real 
metallic surfaces in terms of the values of these parameters, with particular reference to the 
(111) surfaces of gold, platinum, iridium and aluminium. 

1. Introduction 

Surface reconstructions occur because the environment of atoms at a crystal surface is 
significantly different from that of bulk atoms and, as a result, the bonding of atoms at 
the surface is different from that in the bulk. A general feature of the bonding at metal 
surfaces is that the preferred inter-atomic bond-lengths within the surface plane are 
shorter than in the bulk. This effect is now thought to be quite large, the preferred 
surface bond-lengths being up to 10% shorter than in the bulk. In this paper we inves- 
tigate whether this effect could be a driving force for surface reconstructions in which 
the density of surface atoms is larger than the bulk density. 

There are several pieces of evidence that support the assertion that the natural bond- 
length at a metal surface is shorter than in the bulk. Experimental measurements have 
shown that the average lattice constant is reduced from its bulk value in small metal 
particles (Solliard and Flueli 1985, Salomons 1988). This indicates that surface bonds, 
which give a significant contribution to the average lattice constant of small particles, 
favour a shorter bond-length than those in the bulk. Calculations of the surface stress 
tensor for iridium, platinum, gold and aluminium surfaces have shown that these surfaces 
are under tensile stress (Needs 1987, Needs and Godfrey 1987, Needs and Mansfield 
1989). The presence of a tensile surface stress indicates a tendency for the surface to 
contract within the surface plane. Furthermore, calculations of the equilibrium in-plane 
lattice constants of thin slabs of metal (Batra et a1 1986, Dodson 1988) have shown that, 
in all the cases studied, there is a tendency for the surface region to prefer energetically 
a shorter lattice constant than in the bulk. 

Because the bonds at a metal surface prefer to be shorter than those in the bulk one 
might expect the surface to reconstruct so as to reduce the average distance between the 
surface atoms. In fact this seldom occurs because there are two separate effects opposing 
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this possibility. Firstly, because the surface area of a crystal is essentially fixed by sample 
preparation, a reduction in the average distance between the surface atoms must be 
accompanied by an increase in the number of surface atoms. Atomic steps on the surface 
can act as sources of atoms, but removing an atom from a step and incorporating it 
within the surface layer will reduce the average coordination number of the atoms and 
presumably this costs energy. Secondly, if the distance between atoms in the surface 
layer is different from the bulk separation then the bonding with the substrate will be 
disrupted and this will also cost energy. We have argued (Needs and Mansfield 1989) 
that it is vital to include all of these effects in theories of surface reconstructions that 
involve changing the density of atoms within the surface layer. 

In this paper we study a very simple model of a crystal surface and give the conditions 
for stability of the unreconstructed surface against reconstructions where the surface 
density of atoms is increased or decreased. We find that the stability criteria can be 
expressed in terms of the ratio of two parameters which have simple physical inter- 
pretations. Our model is the one-dimensional continuum form of the Frenkel-Kon- 
torova ball and spring model (Frenkel and Kontorova 1938). This model has been 
studied extensively and exact solutions have been found (Frank and van der Merwe 
1949, Bak and Pokrovsky 1981). Our treatment is similar to that of Frank and van der 
Merwe (1949) but the precise form of the stability criteria that we find is not the same as 
theirs because we are studying a somewhat different physical problem. 

We will also discuss the stability of real metallic surfaces in terms of the values of the 
parameters of our model with particular reference to the close-packed (11 1) surfaces of 
gold, platinum, iridium and aluminium. Because of the uncertainty in the appropriate 
values of these parameters we will only be able to draw some rather general conclusions 
about the stability of real surfaces, but we hope to encourage others to calculate these 
parameters more precisely. The (11 1) surface of gold actually undergoes a reconstruction 
where the surface density of atoms is greater than the bulk density (Harten et a1 1985) 
whereas the (111) surfaces of platinum, iridium and aluminium do not reconstruct. The 
idea of applying the Frenkel-Kontorova model to the gold (111) surface is not new; 
Harten et a1 (1985) noted that the form of the reconstruction bore a resemblance to the 
soliton solutions of the Frenkel-Kontorova model. In addition El-Batanouny et a1 (1987) 
fitted a form of the Frenkel-Kontorova model to the experimental data of Harten et a1 
(1985), but in fact knowledge of the experimental structure alone does not give enough 
information to determine uniquely the values of the model parameters. 

The Frenkel-Kontorova model is a very crude representation of a real surface. The 
model is one-dimensional and treats the surface region as a single layer. It includes 
interactions between surface atoms via springs between nearest neighbour atoms and 
includes the interactions with the substrate through a sine wave external potential. 
Furthermore we do not allow for the effects of atomic vibrations, so that our results 
are strictly applicable only at zero temperature. Whilst this model is not an accurate 
description of a real surface it does include, in a simple manner, each of the important 
effects that we believe must be present in a theory of surface reconstructions where the 
density of surface atoms is altered. In a previous paper (Needs and Mansfield 1989) we 
discussed the necessary ingredients of such a theory and concluded that three main 
effects were important: 

(i) the difference in natural bond-length between the surface layer and the substrate, 
(ii) the energy cost or gain of adding atoms to, or subtracting atoms from, the surface 

(iii) the interaction between the surface and substrate atoms which accounts for the 
layer, 

possible disruption of surface-substrate bonding caused by surface reconstruction. 
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The tendency to increase or decrease the density of surface atoms is a result of the 
competition (or collaboration) between effects (i) and (ii) in the list given above. 
Whether such a reconstruction actually occurs or not will also depend on effect (iii), 
which will tend to stabilise the unreconstructed surface. 

2. A simple model with a smooth substrate 

We begin by discussing a very simple model of a surface as a one-dimensional line of 
atoms connected by springs between nearest neighbours. We imagine that the line of 
atoms sits on top of a smooth substrate. The model thus includes the first two effects 
mentioned in section 1, but not the third, and is the Frenkel-Kontorova model in the 
special case of zero substrate potential (see section 3). The purpose of studying this 
model is to clarify the role of the energy cost of changing the density of atoms at the 
surface and to write this energy cost in terms of quantities that can be measured or 
calculated. We will derive a simple result for the energy change, A E ,  associated with 
adding an atom to the surface. This energy change will play a central role in determining 
the stability of the surface. A E  can be split up into three contributions, the energy cost 
to remove an atom from a kink site at a step on the surface (which is equal to the bulk 
cohesive energy per atom), the energy gained by forming new surface bonds (which may 
be strained) and the change in energy that arises because all of the atoms must squash 
up a bit to make room for the extra atom. We will find that A E  is related to the strain 
derivative of the surface energy which is a quantity which can readily be calculated. 

We model the surface as a line of equally spaced atoms with separation x lying on 
top of a smooth substrate. The surface has length L and contains N atoms, so Nx = L. 
We write the energy required to create the surface by cleaving the crystal as 

where y is the surface energy per unit length, p is the spring constant and b is the natural 
length of the surface bonds. Equation (1) can be viewed as an expansion of the surface 
energy per atom, Ly/N, about the minimum value at x = b where the bonds are 
unstrained. The quantity r contains two terms, each contributing for every atom present 
in the surface layer. The first term is the negative of the chemical potential of the particle 
reservoir. The particle reservoir consists of the kink sites at atomic steps on the surface 
and the energy to remove an atom from such a kink site is the bulk cohesive energy per 
atom. The second term in accounts for the new bonds that are formed as the extra 
atom is introduced into the surface. Because the coordination number of bulk atoms is 
larger than that of surface atoms we would normally expect the bulk cohesive energy 
per atom to be larger than the energy gained by forming new bonds at the surface and 
so r will, in general, be positive. Because we expect r to be positive we will refer to it 
as the energy cost per atom. 

In this model the number of atoms within the surface layer, N ,  is allowed to vary so 
as to minimise the energy. Atoms will be added to, or subtracted from, the surface layer 
until equilibrium is reached, which corresponds to minimising the surface energy per 
unit length, y. Because we have a smooth substrate this model can be solved trivially. 
In equilibrium all the atoms must be separated equally and hence the condition that the 
surface energy per unit length be minimised implies that dy/& = 0. This leads to the 
following solution for the equilibrium inter-atomic separation xo 

L y  = N[T + ap(x - b ) 2 ]  (1) 

112 
x0 = ( b 2  + 

We will find it convenient to introduce the notion of surface stress (Shuttleworth 
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1950, Herring 195l), g. which, for our one-dimensional model, is the strain derivative 
per unit length of the energy required to form the surface with the number of atoms in 
the surface layerfixed. This is given by 

g = (x/L) d (Ly)/dx = y + x dy/dx = ,U(X - b)  (3) 
which is just the tension in the springs. Note that because we consider the infinitesimal 
strain to be applied rapidly compared with the time for atoms to migrate from step sites 
on the surface it is appropriate to consider the derivative with a fixed number of surface 
atoms. 

The energy change, A E ,  on addition of an extra atom to the surface layer when the 
surface inter-atomic separation is x (correct to order 1/N) can be obtained by dif- 
ferentiating equation (1) with respect to the number of surface atoms, N .  This leads to 

where dy/de is the strain derivative of the surface energy. When equilibrium is estab- 
lished AE will be zero so that g = y and dy/de = 0, but we can argue that, for the 
unreconstructed surface, x(dy/de) is a measure of the tendency to add atoms to, or 
subtract atoms from, the surface layer. If x(dy/ds) is positive then the addition of extra 
atoms to the surface layer will be energetically favourable, if on the other hand 
x(dy/de) is negative it will be energetically favourable to remove atoms from the surface 
layer. Note that this is not necessarily implied by the presence of a tensile (positive) 
surface stress. A tensile surface stress indicates that the preferred surface bond-length 
is less than the substrate bond-length, but because there is an energy cost, r, associated 
with changing the number of atoms within the surface layer this does not imply that it is 
necessarily energetically favourable to increase the density of surface atoms. We should 
also point out that, for our model with a smooth substrate, the unreconstructed surface 
is always unstable to either adding atoms to or subtracting atoms from the surface layer. 
To obtain a region of stability for the unreconstructed surface we must consider a more 
realistic surface-substrate interaction. 

So far we have considered the case of a smooth substrate. The inclusion of a non- 
zero surface-substrate potential will change the nature of the equilibrium solution of our 
model and it will no longer be true that, in equilibrium, g = y .  We can imagine that in 
general the effect of the surface-substrate interaction will be to give an additional energy 
cost for changing the density of surface atoms. This effect may be included by adding, 
for instance, a sine wave potential to the surface energy expression of equation (1) with 
minima at the substrate lattice positions (which for convenience we can choose to be at 
zero energy). When an interaction of this form is included we arrive at the Frenkel- 
Kontorova model (Frenkel and Kontorova 1938) which will be studied in the next section 
of this paper. We note that the inclusion of a substrate potential of this form does not 
change the surface energy of the unreconstructed surface because each atom lies at a 
zero of the substrate poential. To define a surface stress we must know how the substrate 
potential changes when a strain is applied to the sample. If we assume that the potential 
deforms with the applied strain so that the minima do not shift in energy then the 
substrate potential does not alter the surface stress of the unreconstructed surface. In 
fact the level of the substrate potential may shift with strain but inclusion of this effect 
would introduce another parameter into our model, and for the sake of simplicity we 
shall ignore this possibility. Hence we argue that, for a real surface with surface-substrate 
interactions, the magnitude of x(dy/de) still measures the tendency of the surface to 
change its atomic density. This tendency will be opposed by the increase in energy due 
to the presence of the surface-substrate interaction which is composed of two parts: the 

AE = xy - xg = - x(dy/d&) (4) 
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Figure 1. The one-dimensional Frenkel-Kon- 
torova model. Each atom is connected to its two 
neighbours by springs of modulus p and natural 
length b. The atoms sit in an external sine wave 
potential of periodicity a and peak-to-peak ampli- 
tude W. 

first is the direct interaction of the atoms with the substrate potential and the second is 
the extra strain energy in the surface bonds due to the fact that, in the equilibrium 
solution, the atoms will not be equally spaced. For the materials we have studied 
(aluminium, iridium, platinum and gold) dy/de is calculated to be positive (Needs 1987, 
Needs and Mansfield 1989), indicating that reconstructions which involve increasing the 
density of surface atoms are possible but that reconstructions which lower the surface 
density are highly unlikely. 

3. The Frenkel-Kontorova model 

In this section we describe the Frenkel-Kontorova model which was briefly introduced 
in the previous section and is illustrated in figure 1. This model has the great advantage 
of being amenable to largely analytic solution though it contains the essential physics of 
the competing processes that we mentioned in the introduction to this paper. The 
Frenkel-Kontorova model has mainly been used to study the adsorption of atoms on 
surfaces and the stability of overlayers (Frank and van der Merwe 1949, Jesser and van 
der Merwe 1989) but clearly it can also be used to model the surface of a clean crystal 
where the natural bond-length within the surface layer is different from that of the 
substrate. We write the total energy, U ,  for N atoms as 

N 

U =  n = l  x [4p(~ ,+~-x , -b) ’+4W 

where x, is the x coordinate of the nth atom in the chain, p is the force constant of the 
springs, b their natural length and r is the energy cost associated with each surface atom 
which was discussed in section 2 of this paper. The substrate potential is a sine wave of 
amplitude W and periodicity a. Non-trivial solutions of this model arise because of the 
presence of competing periodicities; left to itself the surface would prefer a nearest- 
neighbour spacing of b ,  whereas the substrate is trying to force the atoms into bulk lattice 
positions whose spacing is a. 

It is convenient to work in terms of the dimensionless coordinate U, = (x, - na)/a. 
U, is a measure of the distance of the nth atom from the nth trough of the substrate 
potential; if U, is integral then the nth atom sits in a potential minimum, if it is half- 
integral the nth atom sits on a potential maximum. Writing equation (5) in terms of U, 

leads to 

The condition for a solution with no forces on the atoms is that 8 U/au, = 0 for all i. This 
implies that 
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ui+l - 2ui + ui-l = (Wn/pa2)  sin 2nui.  (7) 
We now take acontinuum limit in which the discrete label i is replaced by a corresponding 
continuous argument i. We expand the left-hand side of equation (7) as a function of i 
and retain only the lowest-order term. Equation (7) then becomes, having replaced i by 
n ,  

The solutions of equation (8) give the equilibrium configurations of the chain within the 
continuum approximation. The summation over atoms in equation (6) becomes an 
integration over n and the energy of N atoms is 

d 2u/dn2 = (Wn/pa2)  sin 2nu. (8) 

For our purposes we require the solution of equation (8) with the minimum energy per 
unit length of the surface, which corresponds to minimising the surface energy density. 
This is a slightly different condition from the one that is normally imposed which is to 
minimise the energy for N surface atoms. 

4. Solution of the Frenkel-Kontorova model 

In this section we determine the criteria for stability of the unreconstructed solution of 
equation (8) where each of the atoms lies at the bottom of one of the potential wells. 
Note that r does not influence the form of the equilibrium equation, it merely shifts the 
relative energies of its solutions. Equation (8) may be integrated twice with respect to n 
to give the solutions with no forces on the atoms as was done by Frank and van der 
Merwe (1949). There are two branches of solutions: one in which the chain of atoms 
expands with respect to the substrate (i.e. the mean separation is greater than a)  and a 
second in which the chain contracts (and the mean separation is less than a) .  The 
solutions describe a periodically repeated surface structure in which the unit cell contains 
either one more or one less atom than there are minima of the substrate potential in the 
same distance. The additional (or missing in the case of expansive solutions) atom results 
in a dislocation, or region of misfit, known as a soliton. The soliton density (and size of 
the periodic unit cell) is variable and depends upon one constant of integration. 

We now derive the reconstruction criteria by considering the energy cost required 
to create a single compressive (or expansive) soliton in an unreconstructed chain. On 
performing the integration of equation (9) we obtain the energy, U ,  for a surface unit 
cell containing N atoms which we write as 

where we have partitioned U so that we may physically interpret the origin of each term. 
The strain energy has been split into two parts U1 and U2. U1 is the elastic energy the 
chain would have if the unit cell contained the same number of atoms but they were all 
equally spaced. This we call the homogeneous strain energy. U 2  is the additional elastic 
energy the chain has due to the fact that the atoms in the unit cell are not all equally 
spaced; some are closer to each other than the average and some further apart. This we 
call the inhomogeneous strain energy. U3 is the potential energy of interaction of the 
surface chain with the underlying substrate. Finally, rN i s  the energy cost for theNatoms 
which was discussed in section 2. The three quantities U1, U 2  and U3 are all positive. 

For the unreconstructed chain, which is the solution to equation (8) with u(n) = 0, 
the energy of N atoms is given by equation (9) as 

the only contributions being the homogeneous strain term (U , )  for atoms separated by 

U =  U1 + U2 + U3 + T N  (10) 

U = &+(a - b)2N + T N  (11) 
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a distance a and the r term. The inhomogeneous strain energy (U,) is zero because all 
the atoms are equally spaced and the substrate interaction term (U,) is zero because all 
the atoms lie at zeros of the substrate potential. We now consider the energy of the 
solution of equation (8) which contains a single compressive (or expansive) soliton. In 
this case we can evaluate the integral in equation (9) to obtain the energy terms of 
equation (lo), giving 

u1 + r (N +- I) = &(a - b ) 2 ( ~  t I) t pu(b - U )  + r (N i 1) 

U2 = U3 = ( l /n )  w w .  

(12) 

(13) 

and 

In equation (12) the term 2 p a ( b  - a )  is the correction to the homogeneous strain 
energy due to the single atom having been added to (or subtracted from) the infinite 
chain which results from the fact that the separation of the atoms will no longer be 
precisely equal to a. The positive signs in equation (12) correspond to the case where 
the atom is added to the chain and the negative to where it is removed. We note that 
equation (12) gives the energy the surface would have on addition (or subtraction) of a 
single atom in the absence of the sine wave substrate interaction. Equation (13) gives 
the additional energy cost U2 + U ,  due to the presence of the substrate potential. This 
latter term may be considered as the energy required to create a single isolated soliton 
and is the same whether the soliton is compressive or expansive. 

We now evaluate the change in energy when one atom is added to the unreconstructed 
chain to form a single compressive soliton. The energy to add an atom to the chain such 
that the separation of the atoms remains uniform is obtained from equations (11) and 
(12) as 

U1 + r (N  + 1) - U = r + +(a - b)z  - pa(a - b )  = Wp (14) 
which serves to define the dimensionless parameter p. Equation (14) is precisely the 
term A E  of equation (4) in the case where the separation of the atoms, x ,  is equal to a. 
This correspondence between equations (4) and (14) is very useful because it will allow 
us to obtain W p  from the surface stress and surface energy which can be measured or 
calculated. Similarly the energy change due to the presence of the substrate, which we 
call the soliton formation energy, is given by 

U2 + U3 = (2/n) w w  = W a  (15) 
with this equation serving to define the dimensionless parameter a. Note that a i s  always 
positive but that p may have either sign (since for a real metal surface b < a). Hence it 
is energetically favourable for the chain of atoms to create a single compressive soliton 
if the sum of equations (14) and (15) is less than zero, that is if W a  + Wp < 0. 

Similarly the energy to subtract a single atom from the chain, while keeping the 
separation of the atoms uniform, is 

U 1  + r ( N  - 1) - U = - r - &(a - b)* + pa(a - b)  = - Wp (16) 
and the formation energy for an expansive soliton is identical to the expression given in 
equation (15). This means that it is energetically favourable for the chain of atoms to 
create a single expansive soliton if W a  - W p  < 0. 

These two conditions give the criteria for contractive and expansive reconstructions 
respectively. The stability criteria can be restated in terms of the ratio IpI/a; if IpI/a < 1 
then the unreconstructed surface is stable, otherwise it will reconstruct by adding atoms 
to the surface if /3 is negative and by subtracting atoms from the surface if p is positive. 
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Figure 2. The phase diagram describing the reconstruction behaviour of the lowest energy 
equilibrium solution of the one-dimensional Frenkel-Kontorova model. The two straight 
lines (Y = - p  and CY = /3 divide the parameter space into three regions. In the region to the 
left the chain reconstructs compressively, in the region to the right it reconstructs expansively 
and in the region in the middle it is stable to reconstruction. The broken curve gives our 
estimate of the borderline of the validity of the continuum approximation, above the broken 
curve the approximation is good and below it is poor. 

If it is energetically favourable for the chain to form a single soliton of one type then it 
will continue to form more solitons of the same type until such time as the repulsive 
interaction between them balances the formation energy. Such a balance will always 
occur because the repulsive interaction between solitons increases as their density 
increases. 

Figure 2 shows the reconstruction behaviour in (a ,  p)  space. We see that the phase 
diagram is divided into three regions by the two lines a = -/? and a = +p ;  in the region 
to the left the surface is compressively reconstructed, in the middle it is unreconstructed 
and in the region to the right it is expansively reconstructed. The general behaviour of 
the chain as a function of the parameters a and /3 is easy to understand; for example 
reducing the magnitude of r corresponds to keeping a fixed and decreasing p which 
moves the representative point towards the left of the diagram where the tendency is for 
the surface to contract. This happens because a reduction in r results in a lower energy 
cost for adding atoms to the surface which favours compressive reconstructions. 

We have used the continuum form of the Frenkel-Kontorova model and must inves- 
tigate whether this is valid for a real surface. Bak (1981) has demonstrated that solutions 
of the discrete model show the same general features as solutions of the continuum 
version in the limit of small Wand we need to decide whether this limit is applicable to 
our situation. The continuum approximation will certainly be poor if the first term that 
is neglected in the expansion of the left-hand side of equation (7)  has the same magnitude 
as the term retained on the left hand side of equation (8). To illustrate this we have drawn 
a dotted line on the phase diagram of figure 2 corresponding to the (a ,  /3) pairs for which 
the ground state solution is such that the magnitude of the first term that is neglected in 
the continuum approximation is the same as the term retained on the left hand side of 
equation (8). Above the broken curve in figure 2 the continuum approximation works 
well whereas below it it is poor. Generally speaking, for small values of a the continuum 
approximation is not valid. As a is essentially the ratio of the strength of the surface 
springs to the strength of the substrate potential we can understand why this is; if W is 
large enough then we can expect solutions in which the atoms are pinned to the minima 
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Figure 3. A close-packed monolayer showing the 
zig-zag paths referred to in the text. The circles 
indicate the positions of the atoms of the 
substrate. 

of the substrate potential. Continuum theory cannot hope to model these situations. In 
fact, it turns out that for the region of (a ,  p)  parameter space which applies for real 
surfaces the continuum limit is a very good approximation. We should note that, in the 
limit as W tends to zero, the simple model of section 2 is recovered since W a  tends 
to zero and the unreconstructed surface is unstable to adding atoms if Wp (which is 
independent of W) is negative and unstable to subtracting atoms if Wp is positive. 

We point out that the criteria we have derived in this paper are similar to those of 
Frank and van der Merwe (1949) but differ in that Wp includes two extra terms absent 
in their work: (i) r a n d  (ii) @(a - b)’. The first term is present because r was introduced 
as an additional parameter that we argued was necessary in the theory of surface 
reconstructions and the second is present because our derivation is equivalent to minimis- 
ing the energy per unit length of the surface and not the energy per atom as was done by 
Frank and van der Merwe (1949). Our minimisation is the appropriate one for the theory 
of surface reconstructions but in fact for real surfaces (a  - b) /a  is small so that this 
second term is probably not an important factor in determining whether a surface 
will reconstruct or not. We do, however, believe that this difference is conceptually 
important because it is only with our formulation that one can directly link the energy 
cost to add an atom to the surface, AE or Wp, with the surface stress and surface energy 
via equations (4) and (14). 

5.  Choice of parameters 

In this section we discuss the values of the parameters that are appropriate for real close- 
packed metallic surfaces. Of course real surfaces are two-dimensional and our model is 
only one-dimensional, this is a severe limitation of our approach but we can still discuss 
the stability of surfaces against reconstructions which involve essentially one-dimen- 
sional rearrangements of the atoms. Because reconstructions of the type discussed here 
are rare we expect our analysis to indicate that the unreconstructed surface is stable in 
most cases. In fact the 23 x d 3  reconstruction of the close-packed gold (111) surface 
undergoes a reconstruction which appears to involve the insertion of an extra row of 
atoms into the surface every 23 rows (Harten et a1 1985), which is essentially a one- 
dimensional rearrangement of atoms. In order to apply our model we map the real two- 
dimensional surface problem onto a one-dimensional chain model. To do this we follow 
the idea of El-Batanouny et a1 (1987) and consider the zig-zag path connecting inequiv- 
alent stacking sites on the (111) surface to be unfolded (or straightened out) into a one- 
dimensional line (see figure 3). We then apply the one-dimensional Frenkel-Kontorova 
model to the atoms along this line. This is not an exact mapping but we believe that, 
because of the simple nature of the ball and spring model and the uncertainty in the 
appropriate values of the parameters, a more sophisticated approach is not warranted. 
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Let us consider the form of the substrate potential along the unfolded zig-zag path 
of figure 3. The stacking of close-packed layers is ABC for a face-centred-cubic structure 
so that on the unreconstructed (111) surface there are two inequivalent stacking sites 
that an atom can occupy at which the substrate potential will have minima. For the real 
surface these two stacking sites will have different energies, and we could include this in 
our model by representing the substrate potential by its first two Fourier components 
(as was done by El-Batanouny et a1 1987) and then solving the Frenkel-Kontorova model 
for this new potential. However we do not use this approach since we expect the energy 
difference between the two stacking sites to be small compared with the overall height 
of the substrate potential. There is experimental evidence to support this; Wang and 
Ehrlich (1989) found that the barrier height to single atom diffusion on the Ir (111) 
surface is nearly 20 times the energy difference between the two inequivalent stacking 
sites. We would expect this general picture to remain true for a whole surface layer of 
atoms sliding over an underlying substrate. This observation implies that the second 
Fourier component of the substrate potential along the zig-zag path is much larger than 
the first. In addition El-Batanouny et a1 (1987) interpreted the experimental diffraction 
data of Harten et a1 (1985) as implying that the second Fourier component for the 
Au(ll1) surface is 100 times larger than the first. In light of these observations we will 
consider a model in which the substrate potential along the zig-zag path is modelled by 
taking only its second Fourier component, and where adjacent atoms in the unre- 
constructed chain occupy troughs of the substrate potential which correspond to the bulk 
FCC stacking sites. This means that between any two adjacent atoms in this chain there 
is an empty trough in the substrate potential corresponding to the alternative (HCP) 
stacking site (in the single sine model that we study here, the two alternative sites will 
naturally be degenerate in energy). This results in a simple modification of the analysis 
of sections 3 and 4: the position of atom n is written as x, = au, + 2an rather than x, = 
au, + an to make it clear that the separation of nearest neighbours in the unreconstructed 
surface is 2a rather than a. The same analysis then follows; in particular the recon- 
struction criteria derived in section 4 are unchanged apart from the replacement of the 
constant a in equations (11) to (16) by a' = 2a (the true periodicity of the zig-zag path 
on the (1 11) surface). 

Now we discuss the values of the model parameters a ' ,  b ,  p ,  W, and r that are 
appropriate for the zig-zag path on the (111) surface that we mentioned earlier. We will 
apply the model to the four metals aluminium, iridium, platinum and gold. First of all 
we can deal very quickly with the parameter a' because it is simply the distance between 
two equivalent FCC stacking sites along the zig-zag path on the (111) surface. 

We have estimated the values of the surface force constants, p ,  by using a nearest 
neighbour expression for the bulk modulus of the materials. In fact force constants at 
surfaces can differ markedly from their counterparts in the bulk, but rather little is 
understood about this at the moment. Because surface atoms have fewer neighbours 
than bulk atoms one would think that the remaining surface bonds would be stronger 
and presumably stiffer than those in the bulk. However, the surface bonds are stretched 
from their equilibrium lengths and this will tend to make them softer. Investigations of 
the (111) surfaces of noble metals, for example the work of Doak et a1 (1983) and 
Bortolani eta1 (1984a) on silver and Bortolani et a1 (1984b) on gold, appear to indicate 
that the surface bonds are softer than those in the bulk. On the other hand work on 
aluminium surfaces has indicated that in this case the surface force constants are nearly 
the same as those in the bulk. Because of these difficulties we use a crude estimate based 
on bulk quantities. We must be careful to use the spring constant appropriate to the 
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atomic displacements that we are considering, i.e. the spring constant for displacing 
lines of atoms in the direction of the zig-zags. The appropriate spring constant for the 
one-dimensional Frenkel-Kontorova model is then given by p = 3pf/2 where ,U’ is the 
spring constant for a single bulk bond. 

W is the amplitude of the sinusoidal substrate potential. Accurate values for this 
quantity are not available but we believe that it is very small. Goodwin et a1 (1989) have 
calculated the energy to slide close packed layers of aluminium over one another. From 
their results we can estimate that, for aluminium, the amplitude of the substrate potential 
is of the order of 0.1 eV. In addition experimental measurementsshow that the activation 
barriersfor diffusion of single atoms at surfacesisof a similar magnitude (see for example 
Wang and Ehrlich (1989)). Although these estimates of Ware rather crude we believe 
that all the available evidence points to values for W of the order of 0.1 eV, and this is 
the value we shall use for each of the four metals studied here. It would be interesting 
to perform energy calculations to determine the size of W more accurately. 

This leaves the parameters r and b. We can bypass the problem of knowing this pair 
directly by following the argument given in section 2 of this paper concerning the energy 
change on adding an atom to the surface layer. We then extend this argument to the 
two-dimensional (1 11) surface by considering the zig-zag paths mentioned earlier. 
Consider a chain of N atoms connected by nearest neighbour springs but lying on a 
smooth substrate; this leads to the Frenkel-Kontorova model with W = 0 which was 
considered in section 2 of this paper. We suppose that the chain has total length L and 
all of the atoms are equally spaced with separation a’ so that the energy of this chain is 
given by equation (1) withx = a’ .  Equations (4) and (14) imply that the energy change, 
A E ,  on adding an extra atom to the surface layer is given by 

where y1D and g1D are the one-dimensional surface energy and stress respectively and 
we have noted that AE is equal to W/3 (note tht W/3 does not depend on W ) .  We shall 
use numerically computed values for the surface stress and surface energy calculated for 
the unreconstructed two-dimensional surface to give values for the parameter W/3 for 
the four metals we study here. It should be noted that the substrate potential is present 
in the computations which lead to the values for the stress and surface energy that we 
use, whereas equation (17) was derived assuming that W is zero. 

and g1D which are appropriate 
for a one-dimensional chain, whereas we want to use quantities calculated for two- 
dimensional surfaces. Therefore we must decide how to modify equation (17) by con- 
sidering the zig-zag paths on the close-packed (111) surface (see figure 3): 

(i) a distance corresponding to the periodicity of the substrate potential along the 
zig-zag path (in other words the length of two of the straight line portions in figure 3) is 
equivalent to the two dimensional surface area per atom. Hence dy1D in equation 
(17) should be replaced by Aatomy2D where A,,,, is the surface area per atom on the 
unreconstructed surface and yzD is the surface energy per unit area. 

(ii) by making a cut through the zig-zag paths in figure 3 in the (2, -1, -1) direction 
we can equate the average one-dimensional line stress across this cut with the two- 
dimensional stress (which is isotropic for the unreconstructed close-packed surface) 
multiplied by the length of the cut. This implies that g1D should be replaced by 
f la rg2D/2 ,  where g2D is the two-dimensional surface Stress and a ’ ,  as before, is the 
periodicity of the substrate potential along the zig-zag path. With these modifications 
equation (17) becomes 

and so knowledge of the two-dimensional surface stress and energy gives W/3 directly. 

A E  = r f lp(U’ - b)’ - / i U ’ ( U ’  - b)  = a ’ ( y , ~  - giD) = W/3 (17) 

Equation (17) is written in terms of the quantities 

w/3 = (Y2D - 4g2D) (18) 
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Table 1. The values of the model parameters for aluminium, iridium, platinum and gold 
(111) surfaces. 

AI -0.31 3.31 2.91 0.1 16.1 -3.1 
Ir -1.51 3.12 13.56 0.1 32.3 -15.1 
Pt -2.20 3.20 10.85 0.1 30.3 -22.0 
AU -1.10 3.33 7.02 0.1 25.0 -11.0 

The values of the parameters Wp,  a ' ,  p ,  W, a and p that we have obtained for the 
close-packed surfaces of aluminium, iridium, platinum and gold, using the arguments 
of this section, are given in table 1. The values of a were obtained from the values of a' ,  
,U and W using equation (15) (remembering to replace a by a' = 2a) and the values of 
Wp from equation (14) using the values for gZD and y2D calculated by Needs and Godfrey 
(1990) and by Needs and Mansfield (1989). 

6. Stability of the close-packed surfaces 

In this section we discuss the application of the Frenkel-Kontorova model to real metallic 
(111) surfaces. First of all we can use the values of a and p to determine whether the 
continuum limit is a good approximation to the discrete Frenkel-Kontorova model for 
these surfaces. Using the values given in table 1 we can see that the appropriate points 
(a ,  p)  are well above the dotted line in figure 2 and hence we are in the regime where 
the continuum limit is an excellent approximation to the discrete model. 

The values of a and p given in table 1 place all four metals in the region where the 
surfaces do not reconstruct (the appropriate points are not in the region of (a, 0) space 
that is plotted in figure 2). The aluminium surface is predicted to be very stable against 
reconstruction while the iridium, platinum and gold surfaces are much closer to being 
unstable against reconstructions which increase the density of surface atoms. Because 
Wp is negative in each case, reconstructions involving a decrease in the density of surface 
atoms are extremely unlikely. Our model differentiates strongly between the nearly- 
free-electron metal aluminium and the transition and noble metals iridium, platinum 
and gold. However, the values of a and p for the three transition and noble metals are 
quite similar. In fact the surface structures of iridium, platinum and gold are somewhat 
similar (Van Hove et a1 1981 and references therein), and prediction of similar behaviour 
for the surfaces of these materials is a significant success for our simple model. 

Although the close-packed surfaces of metals do not in general reconstruct, in 
agreement with our model, the gold (111) surface in fact does so. The gold (111) surface 
forms a 23 x v3 reconstruction which appears to consist of the insertion of an extra 
row of atoms every 23 rows. This structure can thus be viewed as an essentially one- 
dimensional reconstruction. We believe that this reconstruction is an example of an 
instability of the general type that we have discussed in this paper. Our simple model 
does not predict this reconstruction but presumably both the model and our knowledge 
of the appropriate values of the parameters are too crude to correctly reproduce the 
differences between the iridium, platinum and gold. 

The appropriate values of the model parameters are not well known and we wish to 
encourage others to calculate them more accurately. There are a number of improve- 
ments which could be made, for instance the understanding of surface force constants is 
progressing rapidly and experiments so far performed have indicated that the bonds at 
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the gold (111) surface (Doak et a1 1983) may be between 30% and 50% softer than in 
the bulk. Note that W a  would decrease if the surface force constant, p, were decreased 
but our estimate of Wp would remainfixed because we obtain it from calculations of the 
surface energy and surface stress which implicitly include the bond softening effect. 
Inclusion of the bond softening effect in W a  would mean that the gold surface is closer 
to the instability towards increasing the surface density of atoms than our crude estimates 
suggest. Another important effect is that the substrate interaction parameter W may be 
very small for gold because it has a full 5d shell so that directional bonding forces are 
less important than in iridium or platinum. Again this would tend to make the surface 
unstable and these two reasons, the bond softening and the relatively weak substrate 
interaction, may tip the balance in favour of an instability for gold. 

7. Conclusions 

In conclusion, we have used the continuum form of the Frenkel-Kontorova model, 
including an energy cost term for each atom, as a simple model for the surface layer of 
a crystal. Whether or not the surface is stable against reconstruction is the outcome of 
competition between the tendency to change the density of surface atoms and the 
disruption of the bonding that such a reconstruction would entail. We have shown that 
the stability of the unreconstructed surface depends on the ratio of two dimensionless 
parameters a and p which have simple physical interpretations. Our derivation has 
shown that the parameter p is related to the surface energy and surface stress; quantities 
which can be measured or calculated for a real surface. 

The minimum energy reconstructed solutions are periodic arrays of dislocations or 
solitons. These solutions form part of a general class of surface reconstructions where 
the density of surface atoms is either increased or decreased from the substrate density. 
The model has been applied, with suitable choices for these parameters, to the close- 
packed (111) surfaces of the fcc metals gold, platinum, iridium and aluminium. The 
uncertainties in the appropriate values of the parameters are quite large but some 
qualitative conclusions can be drawn from this analysis. Our model indicates that the 
(111) surfaces of gold, platinum, iridium and alilminium should not reconstruct, which 
is incorrect for gold but correct for the other surfaces. Our model predicts similar 
behaviour for the surfaces of gold, platinum and iridium (which is on the whole in 
agreement with observations) but that aluminium should behave in a rather different 
fashion. We find that expansive solutions, where the density of surface atoms is reduced, 
are extremely unlikely. On the other hand contractive solutions, in which the surface 
density of atoms is increased, are possible for real metallic surfaces. 
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